In Vitro & CFD Bioequivalence Testing for Orally Inhaled Drug Products

Peter R Byron, Michael Hindle and Worth Longest

Schools of Pharmacy and Engineering, Virginia Commonwealth University, Richmond, VA

Research support: MCV Foundation and FDA (Award # FD004570)

Based on a belief that 2 inhalers should be "BE" when their drug deposition in lung occurs in the same form, doses and locations... "we set out to research [biorelevant in vitro and CFD] methods to partner realistically-designed airway models with representative inhalation profiles, so that ...proving drug deposition equivalence was facilitated...."

Peter Byron, 2010.

Where are we now and what should we do to move forward?

Biorelevant Test Methods

- ☐ Realistic geometries
- □ Internal surfaces coated
- ☐ Realistic airflow profiles
- \Box Total Lung Dose in vitro = $TLD_{in \ vitro}$ = Drug mass escaping MT

Outline

- New method development
 - VCU's 2010 model was "hypothetically medium sized"
 - "Large" and "small" models developed and paired with "simulated, realistic, inhalation profiles"
 - Models validated "geometrically"- anatomy literature
 - Results from "in vitro methods" compared to deposition data in literature from trained humans.. IVIVC
- Choosing the inhalation profiles
 - Realistic ranges for DPI inspiratory maneuvers
- Predicting regional lung deposition based on aerosol properties of TLD_{in vitro} (use of validated CFD)
- The future

New Method Development and IVIVC

- Scaled MT-TB models for normal human adults

- ■"VCU Medium" MT model scaled by volume <u>+</u> 2 SD from literature
 - -S = 27.2, M = 65; L = 107.8 cm³
- Same scaling factors used for TB
- This normal distribution of volumes appears consistent with anatomy literature & linear scaling factors
 - Length x 0.748 = small
 - Length x 1.0 = medium
 - Length x 1.165 = large

...models shown at left

www.rddonline.com/resources/tools

 MT designed to accept inhaler mouthpiece adapters

Budelin Novolizer: TLD_{In Vivo} vs TLD_{In Vitro}

- ☐ In vivo results gamma scintigraphy [Newman, Eur. Resp. J. 16: 178]
- □ IVIVC from 3 models flow profiles simulated to match Newman
- ☐ Error bars = entire range(all cases)

Summary

- \square Median & range of $TLD_{in\ vivo}$ correlates with $TLD_{in\ vitro}$
 - □ when simulated flow extremes coupled with upper airway geometry extremes for a mixed gender, adult population.
 - ☐ Statistically significant differences between S, M and L model correlations (Budelin Novolizer)
- Median TLD_{in vivo} also correlates with TLD_{in vitro} in VCU_{medium} model for Handihaler (tiotropium + lactose), Aerolizer (formoterol + lactose), Easyhaler (albuterol + lactose), Turbohaler (terbutaline)
 - ☐ Delvadia et al, JAMPDD 2013, 26: 138 144
- □ Product comparisons best performed with inhaler representative breath profiles
- □ Need to determine how *TLD*_{in vitro} deposits regionally.

Profile Analysis – toward standard profiles

- Normal profiles, across resistances, DPI trained, 20 adult volunteers
- Gray profiles = Flow rate from mouthpiece
- Red profiles = 10, 50 and 90 percentiles
- Black = sine wave curve-fit to 50% profile (breath simulator)

Where does CFD come in?

- ☐ Coupling careful modeling with *in vitro* testing enables CFD model validation.
 - ☐ e.g. Novolizer (75 LPM for 4 s); Respimat at 37 LPM (Medium MT-TB)
- ☐ Tian et al. (2012) *Aerosol Sci. Technology* 46, 1271-1285

CFD Models for Regional Distribution

- \square Based on size distribution of $TLD_{in\ vitro}$ (drug aerosol entering lung) and validated CFD model predict regional distribution in lung.
- ☐ Tian et al. (2012) *Aerosol Sci. Technology* 46, 1271-1285

Respimat: SD polydisperse

Stochastic Individual Pathway model

The Future for Inhaler Comparisons

Validated "realistic' mouth-throat models (adult human: S, M, L) Public database of inhalation profiles
 □ Median & Cls for different airflow resistance DPIs □ "Leaflet training" vs "personal training (Rx)" [VCU in preparation] □ pMDIs, Gender, age, disease effects needed (TBD)
Use new in vitro tests (with IVIVC) to compare values for TLD _{in vitro}
Measure APSD emitted from MT or MT-TB models with realistic profiles [use in vitro data from MT-TB to validate CFD model] TBD
Predict <i>regional</i> lung deposition using CFD for realistic breath profiles (noting that CFD is most reliable under the lower Reynold's number conditions typical of lung generations 4 through 23) <i>TBD</i>
Accepted bio-relevant in vitro tests coupled with CFD predictions ☐ Easier bridging ☐ Easier "bioequivalence" arguments ☐ Improved understanding (QbD) and ↓ testing